Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Genet. mol. biol ; 40(1): 50-60, Jan.-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-892365

ABSTRACT

Abstract The giant anteater (Myrmecophaga tridactyla, Pilosa, Linnaeus 1758) belongs to the mammalian order Pilosa and presents a large distribution along South America, occupying a great variety of habitats. It is listed in the IUCN Red List of threatened species as Vulnerable. Despite threatened, there is a lack of studies regarding its genetic variability. The aim of this study was to examine the genetic diversity and patterns of genetic structure within remaining populations. We analyzed 77 individuals from seven different populations distributed in four biomes across Brazil: Cerrado, Pantanal, Atlantic Forest and Amazon Forest. We sequenced two mitochondrial markers (control region and Cyt-b) and two nuclear markers (AMELY and RAG2). We found high genetic diversity within subpopulations from National Parks of Serra da Canastra and Emas, both within the Cerrado biome, with signs of population expansion. Besides, we found a notable population structure between populations from the Cerrado/Pantanal and Amazon Forest biomes. This data is a major contribution to the knowledge of the evolutionary history of the species and to future management actions concerning its conservation.

2.
Genet. mol. biol ; 30(1): 112-120, 2007. ilus
Article in English | LILACS | ID: lil-445692

ABSTRACT

We report the genetic structure, relatedness and mating structure of a population of the endangered giant anteater Myrmecophaga tridactyla Linnaeus, 1758 in the Emas National Park, Brazil, based on variability at five microsatellite loci. Additionally, we addressed the hypothesis that the M. tridactyla population studied has low levels of polymorphism and high levels of inbreeding and relatedness and that animals with overlapping home range are highly related. All five microsatellite loci displayed low levels of polymorphism and of expected and observed heterozygosity. The low level of polymorphism and high inbreeding showed by the population studied may be the outcome of high mortality and reduction in population size due to recurrent fire events in the Emas National Park, as reported in 1994. The reduction in population size may have led to a higher frequency of mating between closely related animals, augmented by the isolation of the population in the park because of the expansion of agricultural land and fragmentation of the Cerrado environment. The natural history of M. tridactyla and the phylopatric (sex-biased dispersal) behavior of females should increase the effects of isolation and bottlenecking, decreasing gene flow and increasing inbreeding. However, the low levels of polymorphism found in this population may simply be due to the natural history and evolution of M. tridactyla as reported for other species. The genetic structure and dynamics of this population needs to be investigated more profoundly in order to provide sound data for the design of conservation strategies for M. tridactyla in the Emas National Park.

SELECTION OF CITATIONS
SEARCH DETAIL